Midterm 2: MAT 319

Instructions: Complete all problems below. You may not use calculators or other aides, including cell phones and books. Show all of your work. Be sure to write your name and student ID on each page that you hand in.

1.(25pts) Consider the function $f(x) = \sqrt{x}$ for $x \ge 0$. Provide a full proof of your answer to the following questions.

- a) Is f uniformly continuous on (0, 1]?
- b) Is f uniformly continuous on $[1, \infty)$?

2.(25pts) Consider the sequence of functions $f_n(x) = \frac{1}{1+x^n}$ for $x \ge 0$ and n = 1, 2, ...Provide a full proof of your answer to the following questions.

a) Compute the limit function $f(x) = \lim_{n \to \infty} f_n(x)$.

b) Does f_n converge uniformly to f on [0, 1]?

a)
$$f(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & x > 1 \end{cases}$$

This follows from the known limit:
 $\lim_{n \to \infty} x^n = \begin{cases} 0 & 0 \le x \le 1 \\ 1 & x \ge 1 \end{cases}$
b) No. If it converged uniformly on [0,1]
the limit function f would be continuous
on [0,1], since each fin is continuous on
this interval. However, f is clearly not
continuous on [0,1], yielding a contradiction.

3.(25pts) Show that $\sum_{n=1}^{\infty} \frac{1}{n^3} \sin(nx)$ converges uniformly on \mathbb{R} to a continuous function.

Observe that $\frac{ S n(n\times) }{n^3} \leq \frac{1}{n^3} =: M_n$ for
all XER, and \$M_ <00 by the
integral test. Thus, the Weierstrass
M-test implies that the series converges
uniformly on R. Since each of the partial
sums is continuous, the limit is also
continuous due to the uniform convergence
theorem.

4.(25pts) Let a function f be defined on \mathbb{R} , and assume that $|f(x) - f(y)| \le (x - y)^2$ for all $x, y \in \mathbb{R}$. Prove that f is a constant function.

We have that for any
$$y \in \mathbb{R}$$
,
 $|f(y)| = \left| \lim_{x \to y} \frac{f(x) - f(y)}{x - y} \right|$
 $= \lim_{x \to y} \frac{|f(x) - f(y)|}{|x - y|}$
 $\leq \lim_{x \to y} \frac{|x - y|^2}{|x - y|} = 0$.